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An elementary example for an iterated mapping with retardation is defined, 
which exhibits a Whitney fold bifurcation of the long-time limit. The long-time 
dynamics is quite different from the bifurcation scenario known for conventional 
iterated mappings. There appear two nontrivial power-law exponents, one 
describing the decay toward a plateau value and the other describing the one 
below this plateau, which vary continuously with a model parameter. The 
slowing down of the dynamics near the critical point is ruled by two divergent 
time scales, characterized by two different nonuniversal exponents. This leads to 
a stretching of the relaxation over large time intervals. A scaling law description 
of the bifurcation dynamics is derived. 

KEY WORDS: Iterated mappings: dynamics with retardation: bifurcations: 
nonuniversal power law decay: dynamical scaling laws. 

I N T R O D U C T I O N  

It is well u n d e r s t o o d  tha t  some  proper t i e s  of  d y n a m i c a l  sys tems can  be 
s tud ied  also for i te ra ted  m a p p i n g s  g,,, = ,~(g,  if,,,_ ~ ), m = 1, 2 ..... <~1 Here  ~,,, 
is some  vec tor  in a n o r m e d  space B a n d  g is a n o n - l i n e a r  t r a n s f o r m a -  
t ion  d e p e n d i n g  s m o o t h l y  o n  g . . . .  t a n d  o n  a con t ro l  p a r a m e t e r  vec tor  ~'. 
A pa r t i cu l a r  p h e n o m e n o n  of  in teres t  is the W h i t n e y  fold (or  s add l e -node )  
b i f u r ca t i on  of  the la rge-m l i m i t  ,~m--+~ (2'3) In  this  case one  can  choose  B 

as the  set o f  real n u m b e r s  a n d  ~,,,, ~ as real scalars  g,,,, e, respectively.  M o s t  
naively ,  one  m a y  view this i te ra ted  m a p p i n g  as r ep re sen t i ng  a f i rs t -order  
differential  e q u a t i o n  where  the  t ime  is chosen  discrete. The  m a p p i n g  
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describes the evolution of g,,, out of some initial value go. In this paper a 
mapping of real numbers g,, shall be studied, 

g , , = Y ( e , g ,  gl ..... g .... ,), r e = l , 2  .... (1) 

which generalizes the conventional problem in the sense that g,,, depends 
on all preceding values go, g, ..... g .... 1. 

It is a signature of a fold bifurcation that for e tending toward a 
critical value e,. from one side, say e > e,., the limit f approaches a critical 
value f,. as a square root law. Choosing e,. = 0, .f~. = 0, one gets 

f = a x / ~ e + O ( e ) ,  e--* 0 +  (2) 

For  small negative e there is no f near f,. The model to be studied exhibits 
the behavior (2). The new results concern the asymptotic dependence of g,,, 
for large m and small e. These results shall be contrasted with the conven- 
tional ones for a fold bifurcation for a nonlinear differential equation. The 
reader can deduce the conventional results from the elementary evolution 
equation: g(t) = - g 2 ( t )  + e, g(t  = 0) = go > 0. The discrete version g,,, .  l = 
g, , , (1-g, , , )  + e  of this example was used to discuss the laminar regions for 
an intermittency problem? 4) For the decay at the critical point one obtains 
the power law: g(t--* o 0 ) ~  (to~t), e = 0 .  The dynamics within a window, 
where I g ( t ) - f , . I  is small, is described by a scaling law 

g(t ,e)=y~g+_(t/r~),  e~O.  (3) 

Here the amplitude scale reads y~ oc lell/2 and the time scale follows a 
related power law: r e oc 1/y,. The control parameter  independent master 
functions are: g+(? )=co th (? ) ,  g _  ( ?) = cot( ?). The quoted results are 
universal; they describe the generic fold bifurcation dynamics for all 
differential equations or mappings no matter  how complicated B or ~- 
might be. 

A convincing motivation or obvious physical interpretation for the 
model (1) to be discussed shall not be given. It is suggested that the model 
is interesting since it deals with a novel nontrivial scenario. This scenario 
implies predictions between measurable quantities if one compares the 
results with correlation functions of glass forming liquids. Some experi- 
mental results shall be cited which are compatible with the results derived 
from (1). These points are explained in more detail in the discussion 
Section 4. In Section 2 the model is defined. In Section 3 the bifurcation 
scenario is described in detail. 
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2. DEFINITION OF THE MODEL 

The t r ans fo rma t ion  ~-  in (1) is given by  the e lementary  expression 

J = { go - [ go - 2(~.~,, - ,~; , , )  ] '/- '}/2 (4) 

Here  .~i,,, 44,, are  second o rde r  po lynomia ls :  

~ , , = . ~ . , ( g l  ..... g . . . .  1) 

m -  1 

= ~ g . . . .  /g~, m = 2 , 3  ..... Y ] = 0  (5a) 
/ ~ 1  

m -  1 

= ( m + l ) e + 2  ~ g~, r e = l , 2  .... (5b) 
/ = 0  

The init ial  values  shall  be res t r ic ted to go > 0, the number  2 to 0 < 2 < 1, 
and  the con t ro l  p a r a m e t e r  e to e < ( 1 - 2) go. This ensures g~ < go, where 
gl  = (go/2)(  1 --  x/--W); W =  (1 - )fl-) --  (2e2/go), W >  0. 

One  can prove  the m o n o t o n y  g,,,+ ~ < g .... m = 0, 1 ..... Therefore  

go - 2( ,q/,,,- .~2;,,) > go - 2( ~1 - YTI ) = go W 

Hence,  the a rgumen t  of  the square  roo t  in (4) has a d is tance  f rom the 
b ranch  po in t  not  smal ler  than  go W. Consequent ly ,  .Y-(e, go ..... g , , , - l )  is a 
real number ,  depend ing  smoo th ly  on e, go ..... g . . . .  1 and  2. In  par t icu lar ,  for 
every fixed mo there is some eo = eo(mo)  > O, so that  g,,, is ana ly t ic  in e for 
all [el < eo and all m = 0, 1 ..... mo. These r emarks  ensure that  Eqs. (4) and  
(5) define a wel l -behaved  i tera ted  mapping .  

Obvious ly ,  the sequence g,,, solves the infinite set of  implici t  equa t ions  

g . . . .  i g l =  ~ ( e + X g ~ ) ,  r e = l , 2  .... (6) 
/ = 0  / = 0  

Gener ica l ly ,  for given go ..... g . . . .  1 Eq. (6) has two solut ions  for g,,,. If  
g,,, > - g o / 2  the so lu t ion  used in (4) can be ob ta ined  as s table fixed po in t  
of  the i te ra t ion  p rocedure  

g,,,~,.+ll = ~r2(l"l~'-+~.~,--g~'m]/2g o , . _ .  ,, , r = 1, 2 .... (7) 

One  finds tha t  ~,~"~ ~ g , ,  for r ~  ov if _~ol is smal ler  than  the uns table  fixed o t n  ~,171 

point .  The la t ter  is given by Eq. (4) with the sign of  the roo t  al tered to plus. 
This  obse rva t ion  can be used to define a new i tera ted  m a p p i n g  as 

follows. One  chooses  some fixed s = 1, 2 ..... One  uses (7) with _to~_ ~gm - - ~ g m -  1 
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to define g~,S; for i" 1, 2 ..... s in .  Then one defines _ ~s,,~ = g , , , -  g , , ,  . Obviously,  the 
asymptot ic  dynamics  of  the new sequence g , ,  is the same as the one of  the 
sequence defined by Eqs. (4) and (5). In addition, one notices that  one can 
get the new g,, ,  as close to the old ones as one likes, provided one chooses 
s sufficiently large. The constructed iterated mapping  so will exhibit the 
same bifurcation as the old one, but avoids the use of  square roots; it is 
defined entirely with polynomials.  

3. THE BIFURCATION SCENARIO 

The bifurcation for the specified model  is illustrated by Figs. 1 and 2. 
These are evaluated for go = 10, 2 = 0 . 7 ,  ~ --- ___4.8/4" with n = 1, 2 ..... 6. The 
g , ,  are exhibited by symbols for m = 1 ..... 10 and by g versus t interpolat ion 
curves for m >/11. The following convent ion has been adopted:  g, , ,  = g ( t , , , ) ,  

t,,, = (m + 0.5). 

g(t) 

3 

2 

0 

x I I I 
Xx  

_o ' \  x x ~  n=0 E > 0 

O" \ 
x o,~ 

% 

Xx 1 

I 1 I 

1 2 3 
log It) 

Fig. 1. Results g of the iterated mapping, Eqs. (4) and (5), lbr 2=0 .7  and control 
parameters e = 0  (dashed line, open circles) and e = +4.8/4": g , ,  = g(t , , ,) ,  t , , ,=  ( m  + 0.5). For 
m ~< 10 the g , ,  are shown by symbols and for m ~> 11 as interpolation lines. The dashed-dotted 
line is the critical decay law g,. = A / t  ~ with a = 0.327 and A = 5.47. 
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I I I I I I I 

2 - E>O 

g(t) \N 

1 n:2 

-2 E<O 

I I I I I I I 
2 3 4 5 6 7 8 

log(t)  

Fig. 2. Results as in Fig. 1, but extended to larger t and bigger n. The dotted lines are the 
von Schweidler decay laws g = -B't I' with b = 0.641 and B' chosen so that the asymptotes for 
the curves E <0, n = 2, 3, 4 are matched for g < -10.  

3 .1 .  T h e  B i f u r c a t i o n  P a r a m e t e r  f 

The  m o n o t o n y  g, ,_~-g,>~O ensures  tha t  the l ong  t ime l imit  

g ( t  ~ c o ) = f  exists, e i ther  as a finite n u m b e r  or  as - o z .  S u b t r a c t i n g  f rom 
(6) the  same  e q u a t i o n  wi th  m replaced by  ( m -  1 ), one  gets 

m- I 

2 '  g , , , g o = e +  g ; ; ,+  ~ (g  . . . .  l - t - g  . . . .  t) gt 
I=0 

a n d  thus  g,,,>~O for e~>0. I f f  is finite, one  der ives  f rom E q . ( 6 )  tha t  

.fz = e + ),f'-. Therefore  

g ( t - - * o z ) = f  = [ e / ( l - - 2 ) ]  m, e>~O (8) 

a n d  g diverges  to m i n u s  inf in i ty  for e < 0. The  va lue  e = 0 m a r k s  a crit ical  
po in t  where  the  l o n g - t i me  l imit  exhib i t s  a W h i t n e y  fold b i fu rca t ion ,  

Eq. (2). 
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3.2. The Critical Decay Law 

The decay at the critical point exhibits power-law decrease for large 
times, specified by some critical exponent a: 

g(t--*~v)~A/t",  e = 0 ,  A > 0  (9) 

Exponent a decreases monotonically from 1/2 to 0 if2 increases from 0 to I. 
The nonuniversality of a is a first remarkable difference of the present 
model distinguishing it from conventional bifurcation theories. In Figs. 1 
and 2 the decay for e = 0  is shown as a dashed line. The power-law 
asymptote is exhibited in Fig. 1 as chain a curve for a = 0.327. For t > 120, 
this asymptote cannot be distinguished from the solution g for e = 0 in the 
figures. 

From the mentioned regularity properties of the g,, for finite m ~< mo 
one concludes here as in conventional theories the following. For  every 
accuracy level q > 0 one finds two time scales rl, ,_ = r~. 2(1/)- They specify an 
interval r~ < t < r2 for which g agrees with A/t" within the error q. Within 
this interval g depends smoothly on e only, and also r I is a smooth func- 
tion of e. Thus for small e, both g and r, are insensitive functions of the 
control parameter. The whole sensitive dependence of the dynamics is 
hidden in the e dependence of rz, delimiting the interval for the critical 
decay at large times. The window for the critical dynamics expands to 
arbitrary sizes upon approaching the critical point: r2 --* co if e ~ 0. 

3.3. The Von Schweid ler  Law 

For negative separation parameters the long-time part  follows a power 
law specified by an exponent, to be denoted by b: 

g ( t ~  ~) /go ~ -- (t/r,.) b, e < 0  (10) 

Exponent b increases monotonically from zero to infinity if 2 decreases 
from 1 to 0. The long-time asymptote (10) depends sensitively on the 
control parameter  e. This is specified by the e-dependent scale T~; for e ~ 0 
one finds r ,  ~ ~v. In Fig. 2 the asymptotes (10) are shown with b = 0.641 
as dotted curves; the r ,  are chosen so as to match the g versus log t curves 
for n = 2 ,  3,4 and g(t)<~go. 

Result (10) has no proper counterpart  in the theory of fold bifurca- 
tions for differential equations or iterated mappings without retardation 
effects. Indeed, only in the limit 2 ~ 0, i.e., b ~ o% do the g versus log t 
curves look similar to those obtained for conventional theories. 

There are two scenarios for the onset of the power law (10). First, the 
transient dynamics can decrease g to negative values and then the decrease 
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according .to Eq. (I0) takes over for larger times. This happens for large le]. 
Figure 1 demonstrates this situation for the n = 0 result. In this particular 
case g(t) agrees with the asymptote (10) within 1% for t >  120, i.e., for 
g(t) < - g o .  Second, after the transient dynamics is ended near some r~, 
the decay follows the critical law (9) till about 3, ~ 32. Then g(t) changes 
sign and crosses over to the asymptote (10). This occurs for small I~1, as 
is demonstrated in Fig. 2 for the curve n = 4. It was discussed carefully by 
von Schweidler that decay curves in materials, which nowadays are called 
glassy follow the law (10). (5~ 

3.4. The Time Scales 

A time scale r~ for the quantification of the long-time dynamics for 
e < 0  can be defined, for example, by g ( t = r ~ ) = - g o .  It agrees with the 
scale entering the von Schweidler law (10) within that accuracy, which 
allows us to identify g with its long-time asymptote. For small separation 
parameters a cc e one finds power-law behavior, to be specified by some 
exponent y and some control-parameter-insensitive prefactor S~: 

r~ ~ S~]a] -~ ' ,  a - , O -  (11) 

Exponent y increases monotonically from 1 to ~ if 2 increases from 0 to 1. 
Figure 3 exhibits the r~ versus a results obtained from Fig. 2 for 17 = 2-5; 
the line through the data points is the power law (11) for y=2,31. The 
abscissa is labelled with a = 5e. 

F t 
log(T) ' ~ ' 

9 

7 

5 

3 
I I I I I 

-10 -5  0 5 10 
0 

Fig. 3. T ime  scales r~, T/~ specifying the curves in Fig. 2 for n = 2, 3, 4, 5. For  definit ions see 
text; a = 5 e .  The  lines ar  power  laws: 1/r~ ~ [al ~', 1 / r~ ~ l / r ~  ~ 1,71 '~ with ) ,=2.31,  6 =  1.53 
and  cons t an t s  of  propor t iona l i ty  chosen such tha t  the lal = 3 results are matched.  
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Scale r~ has no counterpart for the e > 0 results, unless one wants to 
use r~= or. For those large t, where the e < 0 results follow Eq. (10), the 
e >  0 results have reached the time-independent plateau f from Eq. (8). 
Thus one can characterize the slowing down of the dynamics as follows. 
Upon increasing the control parameter e toward the critical point 0, the 
decay rate r decreases to zero: oA oc lel >'. For e > 0  one finds 
arrest: co a = 0. 

Another scale specifying the slow dynamics for e < 0 can be defined by 
the zero of the decay function. It shall be denoted by r/7: g(t = rp - )=  0. 
A scale quantifying the slow dynamics for e > 0 can be introduced as that 
time where g reaches the plateau within, say, 10%: g(t = r/~-) = 1.1f. Both 
scales r/~ exhibit power-law divergences at the critical point specified by 
control-parameter-insensitive prefactors S/~ and a common exponent, 
denoted by 6: 

r/~ ~ S ~  [a[ -~, a~O+_ (12) 

Again, 6 increases monotonically from 1 to o~ if 2 increases from 0 to 1. 
Figure 3 exhibits the results from Fig. 2 for n = 2-5; and the full lines show 
the power laws (12) for 6 =  1.53. 

The cusplike shape of the r/~ versus a plot is qualitatively similar to 
what one finds for conventional bifurcations, r/j is the analog of the scaling 
time r~ of the conventional result (3). The dynamics within the windows 
around r/~ slows down symmetrically for b[ ~ 0, up to some ~-insensitive 
amplitude ratio S/'~/S/7. While the conventional theory implies a universal 
scale exponent 6 = 1/2, the present model implies nonuniversality of the 
exponent 6; in particular, one can get 6 as large as desired. 

Since 7' > 6, one finds the ratio of the scales to diverge: 

r~/r/7 ~ ~v, a--* 0 -  (13) 

In this sense one can say that the slowing down of the dynamics upon 
increasing a toward the bifurcation point is characterized by two scales. 
The decay outside the transient regime is a two-step process. The first step 
is the critical decay toward the plateau. This step extends up to the large 
times r/~; these scales are proportional to the time rz(r/) mentioned in 
Section 3.2. The second step for a < 0  is the decay below the plateau 
characterized by the even larger scale r~. This phenomenon has no analog 
for conventional Whitney fold bifurcations. Only in the limit 2 ~ 0 does 
one find r~lrtj --, 1, so that the two-step feature disappears. It was explained 
in Section 3.3 that there are two scenarios for the onset of the long time 
decay for e < 0. The two steps occur only for the second scenario, since it 
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is connected with the appearance of a diverging scale r~ .  For  the first 
scenario both scales r~  and r~ are very close to each other and they do not 
exhibit sensitive dependences on e. 

3.5. The Amplitude Scale 

Upon decreasing HE], the g versus log t curves in Fig. 2 are squeezed 
toward the abscissa. This feature shall be quantified by some amplitude 
scale C~. For  e > 0 one can characterize the size of g by its long time 
asymptote f i n  Eq. (8), so that C,  oc ]al ~/2. For  e < 0 the amplitude shall be 
quantified by the slope Z of the g versus log t graph at the zero: 

Z =  -dg( t ) /d log( t ) ,  t=r /7 ,  E<O (14) 

One finds the universal ]a[ ~/2 law, characterizing Whitney fold bifurca- 
tions: X ~: C~, where the constant of proportionality depends smoothly on 2. 
These findings are illustrated in Fig. 4, which is similar to what one gets in 
conventional theories from Eq. (3). 

Within the intermittency theory the length At of the laminar region 
was considered and found to diverge with a universal exponent i,= �89 
At oc 1~lea". 44' The region extends around the zero r/~ where ig(t) I <r/o for 
small qo. From (14) one derives At=qor/7/Z,  so that the present model 
yields an exponent i, = �89 + ~. 

1"0 1 I I I I I 

C 

I 
0.6 

0.2i 

I I I I I 

-10 - 5  0 5 10 

Fig. 4. Correlation scales Z and f as defined in the text, ~ = 5e. Tile curves are square-root 
laws f ,~ Z ~ 1~1'/2 with constants of proportionality chosen such that the I~1 = 3 results are 
matched. 
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3.6. The Scaling Laws 

Let us examine whether the long-time dynamics follows a scaling law 
(3), as suggested by the conventional theory. The scales in (3) can be 
altered by constants and some conventions shall be used to fix various 
prefactors. The function g + has to approach a positive value for large time 
and here we choose the convention 

Then Eq. (8) implies 

g+(?---, m ) =  1/(1 --2) 1/2 (15) 

Thus one gets from (3), (9) 

Von Schweidler's law implies 

g•  ~ 1/P' (17) 

r~ = A t/"/le ]m,, (18) 

and 

g_(t-.-* o0),.,~ - -B?  b (19) 

The positive parameter B cannot be determined analytically; it follows 
from matching the long-ime solution to the behavior for intermediate 
times. Thus one gets for the scale in (10): ?~B/r~ = l/r~. Since r~ oc r/~, one 
obtains for the two scale exponents & y in (11), (12) 

1 1 1 
= - -  7 - (20) 

6~ 2a' - ~ a a + ~  

The numerical results quoted in connection with Figs. 2 and 3 exemplify 
these finding. 

If g,,, ~ D ~ , m "  for large m, one can use Euler's formula to obtain for 
p > - 0 . 5  the asymptotic expressions 

g7 ~ uT, m-'P + ' /( 2p + 1 ) 
I=0 

'Z 2p + g . . . .  ~g~ ~Dpm2 F(I + p ) Z / [ ( 2 p +  l )F(1  + 2 p ) ]  
/ = 0  

y~ = ]el 1/2 (16) 

In (3) the limit e ~ O  for fixed t is equivalent to t ~ O  for fixed e, i.e., with 
(9): g + ( f ~  O) ~ 1/t". We choose the convention 
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Here F denotes the gamma function. Substitution of these formulas with 
p = - a ,  b into (6) yields 

F( 1 - a)'-/F( 1 - 2a) = 2 = F( 1 + b)'-/F( 1 + 2b) (21) 

This formula explains the numerical value for the exponents a, b and their 
variation with 2 cited above. 

Figure 5 demonstrates the scaling law (3) for those data of Figs. I and 2 
which deal with the dynamics outside the transient regime. Since the shown 
numerical results refer to 7~ oc 1/2", the vertical axis in Fig. 5 is chosen such 
that ~ = 2 " - 4 g .  Similarly, the time is scaled onto the one for n = 4 :  ~= 
tr~4)/r ~'n. Here r I') is the time r/~- introduced in Section 3.4. The rescaling 
of the time is done trivially in the semilogarithmic plots used in Figs. 1, 2, 
and 5: one merely carries out a shift of the plot parallel to the abscissa so 
that the zero of the curve falls on that for the e < 0, n = 4 result. Within the 
accuracy of the drawing all results collapse for t > 50 on common curves, 
which are the master functions g_+ in some convention for the scales. These 
functions agree with the result for n = 5 for the shown 6.25-decade window. 

3 ~ , k l  i i , i I 

I\ 

0 N= " ~ . . . . . .  C 

-1 

- 2  I I I I I i 
1 2 3 

tog (i) 
S 6 7 

Fig. 5. Decay curves  from Figs. I and  2 resealed for each n on the .curves  for n = 4 accord ing  
to ~ = g2 4- ' ,  i '=  tr~4~/r I'n, where r ~'n equals  r p_ for the curve  e =  -4 .8 /4 " ;  The  three open  
circles are the results for n = 4 for the points  m = 8, 9, 10, and  the o ther  symbo l s  refer to the 
co r respond ing  points  of  Fig. 1 for m = 9, 10. T h e  dashed-do t t ed  line is the critical decay A/t ~ 
con t inu t ing  the co r respond ing  curve form Fig. h The  curves with + are the mas t e r  funct ions  
g•  in tile scal ing law (3); they agree with the rescaled results for n = 5, 6 within the shown  
dynamica l  window. 
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4. DISCUSSION 
The described bifurcation scenario has been discussed before within 

the so-called mode coupling theory (MCT) for structural relaxation in 
simple liquids. This theory deals with a regular non-linear model for the 
calculation of the correlation functions ~bk(t) for density fluctuations of 
wave vector k. The MCT exhibits a fold bifurcation for the Debye-Waller 
factor. A generalization of the center manifold theorem has been proven, 
yielding ckk(t)= J'~ + hkG(t). This formula describes the dynamics within a 
window, where ~bk(t)--f~. is small. The wavevector dependent constantsf~,  
h~ depend smoothly on control parameters. The sensitive dependence of the 
dynamics enters via a separation parameter cr; it depends smoothly on the 
system parameters such as the temperature, and its zero defines the critical 
point. The k-independent function G(t) obeys for large times t the equation 

f2 (d/dt) G(t - t ' )  G(t')dt'=2G(t)2+~r (22) 

From (22) together with some mathematical assumptions the scaling laws 
of Section 3 were derived. For details and references to the original 
literature the reader is referred to the review in ref. 6. Even though the 
general MCT equations of motion are motivated within the standard theory 
of liquids, it was not possible to give an ad hoc motivation or physical 
interpretation for Eq. (22). 

The results indicated earlier suggest that there is a whole class of 
models leading to the bifurcation scenario of Section 3. In the literature it 
has been left open whether Eq. (22) has a solution. Neither was it possible 
to specify the conditions which fix the solution of (22) uniquely. In 
Appendix A it is shown that the asymptotic solutions of the model of 
Section 2 solve Eq. (22). This model presents therefore the first mathemati- 
cally well defined example showing that retardation effects can yield a fold 
bifurcation dynamics which is completely different from what one knows 
for conventional theories. In this paper a whole series of non-obvious 
relations for properties of relaxation functions has been obtained. It is 
suggested to leave it to the experimentalist to work out an assessment of 
the theory by comparing the various predicted relations with the data. 

Von Schweidler's finding c5~ has been confirmed repeatedly, typically for 
dynamical window of 1.5 to 2 decades. A particularly impressive example 
was found recently in molecular dynamics studies for a supercooled binary 
mixture of Lennard-Jones atoms. ~7~ In this case the dynamical window for 
the von Schweidler decay extended up to three decades and the large 
signal-to-noise ratio allowed the determination of exponent b ~ 0.49 within 
-t-3 %. The relaxation data for liquids are not compatible with the assump- 
tion that exponent b is universal and in all cases the scale r ,  in (10) 
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depends sensitively on control parameters such as the temperature or 
density 16~. These findings are reflected by the results ( I 1 ), (21). In addition, 
it is predicted that the von Schweidler decay is preceded by another power 
law decay (9). Its amplitude should be control parameter insensitive and its 
exponent a can be evaluated from exponent b via Eq. (21). In particular, 
a ~< 1/2 is predicted. Fourier transformation leads to a self-similar spectrum 
g"(co) oc 1/co R-'. A spectrum with this signature was observed in liquid 
0.4Ca(NO3)_,0.6K(NO3). Neutron scattering experiments detected this 
spectrum as a large enhancement of the cross section above the white noise 
level for a frequency window of almost two decades. ~s~ The spectrum did 
not show a dependence on wave vector k if the latter was varied between 
0 .2 /k-  ~ and 2/k - '. Polarized and depolarized light scattering experiments 
detected the critical spectrum with a very good signal-to-noise ratio over a 
window of almost three decades. ~9~ In this case the dynamics was probed 
on length scales which are three orders of magnitude larger than the ones 
probed in the neutron scattering work. The data yield a ~  0.3. Complete 
tests of the scaling laws and of the various power laws and their inter- 
relations have been done for the mentioned molten salt mixture ~ ~o~ and also 
for colloidal suspensions. ~ In particular, the results on the two scales, as 
summarized in Fig. 3, had been verified. Thus one can conclude that there 
are physical systems which follow the dynamical scenario discussed in this 
paper. 

The Fourier transforms g"+_(co) of the master functions g_+(~) describe 
the crossover from the critical decay co -~ +" for cor~ >> 1 to respectively 
white noise co o or von Schweidler spectra (cor~) -~ -b for cor~ ~ 1. To grasp 
these stretched spectra one has to scan dynamical windows of three-to 
four-order-of-magnitude frequency variation. In order to evaluate the 
predicted spectra numerically with an accuracy of, say 1%, one needs the 
master functions g+_(i) for time intervals extending up to about 108. The 
effort to evaluate g,, is determined by the effort to evaluate .~i,, in (5a), i.e., 
it increases proportional to m-'. However, one can apply a decimation 
procedure for the iterated mapping as explained in Appendix B. This 
procedure leaves the equations invariant and reduces the numerical work 
very efficiently, so that the effort increases proportional to In(m) only. 

A P P E N D I X  A.  T H E  S C A L I N G  E Q U A T I O N  

Let us define a left continuous decreasing function g(t) = g(go; t, c) by 

g(t)=g~,  I < t < ~ l + l ,  l = 0 ,  1 ..... (A.1) 
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Because of (6) it obeys the non-linear integral equation 

g ( t -  t') g(t') dt' = (2g(t') 2 + e) dt' (A.2) 

for all t = ( m +  1), r e = l ,  2 ..... A new function Gq(t)=Gq(t;cr) shall be 
introduced for all q = 1, 2 .... by rescaling with two parameters p > 0, v > 0 
as follows: Gq(t/vq)=/tg(goqa, t,a); a=p'-e. Obviously, the iterated 
mapping (5) implies g(gox;t ,e)=xg(go;t ,e/x z) and thus Gq(t/vq)= 
/tq"g(go; t, a/q2~ From (A.2) one gets therefore 

Gq(t- t ' )  Gq(t')dt'= [)~Gq(t')2-b~] dt'; t = ( m +  1)/(vq) (A.3) 

For fixed t the limit of large q is determined by g,,, for large m. If the latter 
obeys the scaling law of Section 3.6, there exists limq~ ~. G,~(t)= G(t). The 
latter obeys (A.3) for all times t which are rational multiples of 1/v. Since 
these numbers are dense, (A.3) is valid for all t, and differentiation yields 
(22). Up to redefinition of scales, which is possible because the parameters 
p and v can be altered, the function G is given by the master functions 

g+_" G(t,a)=s~lal~/2.g+_(sztlcrl~/2"); s~,s~_>O, crXO 

APPENDIX B. 

Equation (6) can be rewritten as 

2go g,,, + ~;,, = 2g~, + .%, 

~.g,, = e + 2g,],-i + ~ , , -  i 

A DECIMATION T R A N S F O R M A T I O N  

(B. la)  

(B.lb) 

For given go,-.., g,,,,~-J and .?~,,,j these equations determine gm for m = 
ma ..... too. Definition (5a) has to be observed and the root of (B.la)  has to 
be chosen as specified in (4). 

The number mo shall be used as the decimation block size, which is 
written as k.ma,  with some fixed decimation factor k = 2 or 3,.... Let us 
introduce m a averages 

| k - !  
g'r =-k I ~-o g,r,k+l, n~ = 0, 1 ..... ma- -  1 (B.2a) 

and also the number 

1 
~,,~ = e + ~ ( ~ , , o -  e) (B.2b) 
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It shall be assumed that (rod/2) is chosen so large that coarse graining over 
blocks of size k is possible for m>>.mS2. This means that within a 
prescribed accuracy 

g,r,k+l.~,,r,, 1=0,  1 ..... k - l ,  Ih>~md/2 (B.3) 

where g.-, denotes a coarse grained-value. If one applies this formula to 
Eq.(6)  for m = ( t h + l ) k - - 1 ,  one arrives at the same set of  equations 
(B.la),  (B.lb),  and (5a); however, all quantities carry a bar. Consequently 
the original equations can be used to evaluate ~.,  for t ~ l = m d  ..... m o. 

Iteration of  the procedure R times provides the function g( t )  up to 
t = mokR; the calculation effort increases proportional to m o �9 (R + 1 ). 

In order to produce the shown figures one can choose mo = 120, 
k = 10. Choosing mo = 104, one can read off all quoted exponents with five 
relevant digits and evaluate spectra g"(e3) with a relative accuracy not 
worse than I04. 
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